Доза лучевой терапии грей

Уменьшение побочных эффектов

Лучевая терапия в онкологии, последствия которой человек долго ощущает на себе, все же способна спасти жизнь.

Реакция каждого человека на лучевую терапию носит индивидуальный характер. Поэтому все побочные эффекты, которые могут возникнуть, очень трудно предсказать. Перечислим наиболее часто встречающиеся симптомы:

  • Ухудшение аппетита. Большая часть пациентов жалуется на плохой аппетит. При этом необходимо принимать пищу в небольших количествах, но часто. Вопрос питания в случае отсутствия аппетита можно обсудить с лечащим врачом. Организму, проходящему лучевую терапию, необходима энергия и полезные вещества.
  • Тошнота. Одна из основных причин снижения аппетита — тошнота. Чаще всего данный симптом можно встретить у больных, которые проходят лучевую терапию в зоне брюшной полости. При этом может появиться и рвота. О ситуации должен быть немедленно проинформирован врач. Возможно, больному потребуется назначение противорвотных средств.
  • Диарея. Диарея часто возникает в результате лечения методом лучевой терапии. В случае возникновения диареи необходимо употреблять как можно больше жидкости для предотвращения обезвоживания организма. Об этом симптоме также следует сообщить лечащему врачу.
  • Слабость. В процессе курса лучевой терапии пациенты значительно уменьшают свою активность, испытывая апатию и находясь в плохом самочувствии. С этой ситуацией сталкиваются практически все больные, которые прошли курс лучевой терапии. Особенно тяжело даются больным визиты в больницу, которые периодически нужно совершать. На этот период времени не следует планировать дела, отнимающие физические и моральные силы, следует оставлять максимальное время на отдых.
  • Проблемы с кожей. Через 1-2 недели после начала лучевой терапии кожа, оказавшаяся в зоне воздействия излучения, начинает краснеть и шелушиться. Иногда больные жалуются на зуд и болевые ощущения. В этом случае следует использовать мази (по рекомендации врача-радиолога), аэрозоль «Пантенол», крема и лосьоны для ухода за детской кожей, отказаться от косметических средств. Растирать раздраженную кожу категорически запрещено. Участок тела, где произошло раздражение кожи, необходимо мыть лишь прохладной водой, временно отказавшись от приема ванн. Необходимо избавить кожу от влияния прямого солнечного света и носить одежду с использованием натуральных тканей. Эти действия помогут снять раздражение кожи и уменьшить боль.

После прохождения курса лучевой терапии врач даст рекомендации, как себя вести дома, принимая в расчет особенности вашего случая, чтобы минимизировать побочные эффекты.

Любой, кто знает, что такое лучевая терапия в онкологии, последствия этого лечения тоже хорошо себе представляет. Те больные, которых лечат методом лучевой терапии от опухолевого заболевания, должны придерживаться рекомендаций врача, содействуя успешному лечению и стараясь улучшить свое самочувствие.

Основные рекомендации:

  • Больше времени уделять отдыху и сну. Лечение требует большого количества дополнительной энергии, и вы можете быстро утомляться. Состояние общей слабости иногда длится еще 4—6 недель после того, как лечение уже окончено.
  • Хорошо питаться, стараясь предотвратить потерю веса.
  • Не надевать тесную одежду с тугими воротниками или поясами в областях, подвергшихся облучению. Лучше предпочесть старые костюмы, в которых вы ощущаете комфорт.
  • Обязательно информируйте лечащего врача обо всех принимаемых вами лекарствах, чтобы он мог учесть это при лечении.

Доза облучения

Дозой облучения называют объем ионизирующего излучения, поглощенный тканями организма. Раньше единицей измерения дозы облучения служил рад. Сейчас для этой цели служит Грей. 1 Грей равняется 100 радам.

Различным тканям свойственно выдерживать разные дозы радиации. Так, печень способна выдержать почти в два раза больше радиации, чем почки. Если общую дозу разбить на части и облучать пораженный орган день за днем, это усилит ущерб раковым клеткам и уменьшит здоровой ткани.

В настоящее время имеется возможность использования различных видов лучевого лечения. В связи с этим врач должен иметь представление о видах и источниках излучения, а также современных аппаратах, используемых для облучения больных.

В современной лучевой терапии применяют разнообразные виды излучений, которые различаются по биологическому воздействию, проникающей способности, распределению энергии в пучке излучения. Излучение, которое при взаимодействии с веществом приводит к появлению в нем зарядов разных знаков, называют ионизирующим.

Оно может быть фотонным и корпускулярным. Фотонное ионизирующее излучение представляет собой электромагнитные колебания, характеризующиеся энергией излучения, которая зависит от частоты колебаний и длины волны.

В зависимости от способа получения различают: рентгеновские лучи низких и средних энергий (получают на специальных рентгенотерапевтических установках); тормозное излучение высоких энергий (получают с помощью ускорителей электронов); гамма-излучение естественных или искусственно получаемых радиоактивных элементов.

Корпускулярное ионизирующее излучение — это поток ядерных частиц. В лучевой терапии используют пучки элементарных ядерных частиц — заряженных (электроны, протоны, отрицательные тяжелые ионы, а также альфа- и бета-излучения радиоактивных изотопов) и потоки незаряженных частиц — нейтронов. Различные виды ионизирующего излучения отличаются проникающей способностью и распределением при облучении их поглощенной энергии в тканях (рис. 9.6).

Рис. 9.6. Распределение поглощенной энергии излучения в тканях при воздействии различных видов излучения. 1 — рентгеновское излучение, генерируемое при напряжении 30 кВ; 2 —  быстрые электроны с энергией 30 МэВ; 3 — гамма-излучение Со63 (энергия гамма-квантов 1,17 МэВ); 4 —  тормозное излучение бетатрона с энергией фотонов 25 МэВ; 5 — протоны с энергией 160 МэВ.

Источники излучения.

Источниками излучения могут быть как радиоактивные вещества — естественные или искусственно получаемые радионуклиды, так и специальные электрофизические аппараты, создающие терапевтические пучки излучения: рентгеновские аппараты, ускорители электронов и протонов, генераторы нейтронов.

В нашей стране для дистанционного и контактного гамма-облучения используют в основном искусственные радионуклиды, получаемые в атомных реакторах, генераторах, на ускорителях и выгодно отличающиеся от естественных радионуклидов монохроматичностью спектра испускаемого излучения, высокой удельной активностью и дешевизной (табл. 9.1).

Доза лучевой терапии грей

Таблица 9.1. Характеристики радионуклидов, используемых в лучевой терапии.

Источники, указанные в таблице (кроме Со), используют в основном для внутриполостного и внутритканевого облучения в виде игл, трубок, прутьев, проволоки, шариков и т.д. Наиболее распространенный источник излучения — радиоактивный изотоп кобальта, период полураспада которого 5,24 года и энергия излучения 1,25 МэВ.

Для получения источника заготовку из стабильного изотопа 59Со помещают в горячую зону реактора, где под воздействием тепловых нейтронов происходит накопление радиоактивного 60Со, который затем помещают в ампулы из нержавеющей стали и запаивают.

Классификация способов выполнения лучевой терапии представлена на рисунке 9.7.

Рис. 9.7. Методы лучевой терапии и источники излучения.

Как видно из схемы, все существующие способы облучения делятся на дистанционные и контактные. Контактное облучение подразделяют на наружное (аппликационное) и внутреннее. Внутреннее, в свою очередь, может быть системным, внутриполостным и внутритканевым, которое называются еще брахитерапией.

Дистанционное облучение. В том случае, когда источники излучения находятся на определенном расстоянии от тела больного, такое облучение называют дистанционным или телетерапией (tele — далекий).

Различные виды излучений в зависимости от физических свойств и особенностей взаимодействия с облучаемой средой создают в организме характерное дозное распределение и плотность образующейся в тканях ионизации. Эти параметры определяют относительную биологическую эффективность излучений, чем руководствуются при выборе их вида для облучения конкретных опухолей.

Короткофокусная (близкодистанционная) рентгенотерапия (КФР).

Первые шаги и становление дистанционной лучевой терапии связаны с испопьзованием рентгеновских лучей низких и средних энергий. Генерируемое трубкой при напряжении 60-90 кВ рентгеновское излучение полностью поглощается на поверхности тела (рис. 9.6).

Однако экранирование его костной тканью и значительное боковое рассеивание энергии ведет к лучевому повреждению костей, лежащих за границами облучаемого очага КФР широко применяется для лечения опухолей кожи, распопоженных на глубине до 5-6 мм от поверхности тела, поскольку максимальная доза излучения находится вблизи поверхности тела. Для КФР используют короткофокусные рентгеновские аппараты типа РУМ-7, ТУР-60.

Гамма-излучение радиоактивного кобальта (60Со) имеет более высокую энергию излучения, максимум дозы в тканях смещается на глубину 5 мм, вследствие чего уменьшается лучевая нагрузка на кожу (рис. 9.6).

Большая проникающая способность дистанционной гамма-терапии позволяет широко использовать ее для облучения глубокорасположенных новообразований В настоящее время наибольшее распространение получили Тамма-терапевтические установки для статического облучения Луч-1 и АГАТ-С, для подвижного облучения — ротационная АГАТ-Р и ротационно-конвергентная РОКУС.

Автоматизированные аппараты РОКУС-АМ и АГАТ-Р2, управление которым осуществляет микрокомпьютер, позволяют проводить автоматическое и полуавтоматическое облучение.

Электронное и тормозное излучение.

Линейные ускорители электронов и циклические ускорители (бетатроны и микротроны) с выводом пучков тормозного и электронного излучения все шире применяют для облучения больных злокачественными опухолями. Электронное излучение, генерируемые ускорителями, создают в тканях, в отличие от воздействий другими видами ионизирующих излучений, максимум дозы непосредственно под поверностью (рис. 9.6).

Поэтому оно из-за более равномерного распределения дозы поверхности (по сравнению с рентгеновским излучением), имеет преимущества при облучении поверхностных и неглубоко залегающих очагов. Генерируемое ускорителями высокоэнергетическое тормозное излучение получается в результате торможения быстрых электронов в поле ядер мишени, изготовленной из золота или платины.

Ввиду большой проникающей способности тормозного излучения максимум дозы смещается в глубину ткани, лучевая нагрузка на кожу входного поля незначительна (рис. 9.6). Больные хорошо переносят облучение тормозным излучением из-за незначительного рассеивания его в теле и низкой интегральной дозы. Тормозное излучение целесообразно использовать для облучения глубокорасположенных опухолей (рак легкого, пищевода, матки, прямой кишки й др.).

Наибольшее распространение в радиотерапевтической практике получили медицинские линейные ускорители электронов ЛУЭВ-15М1, генерирующие пучки электронов с энергией и тормозное излучение. Ускорители элементарных частиц являются универсальными источниками излучения, позволяющими произвольно выбирать вид излучения (электронные пучки, фотоны, протоны, нейтроны), регулировать энергию излучения, размеры и формы полей облучения и тем самым индивидуализировать программу радикальной лучевой терапии опухолей различных локализаций.

Корпускулярное излучение.

В онкологии чаще всего используют пучки элементарных ядерных частиц (электроны, протоны и нейтроны). Эти частицы получают на циклотронах, синхроциклотронах, синхрофазотронах и линейных ускорителях. Такими установками располагают только крупные физические институты.

Протоны имеют пробег в тканях, от 8 до 25 см (рис. 9 6) с максимумом ионизации в конце пробега и малое рассеяние, что позволяет формировать узкие (диаметром 3-10 мм) почти не расходящиеся пучки, которыми прицельно облучают небольшие внутричерепные патологические очаги различных структур центральной нервной системы и гипофиза.

Нейтронная терапия проводится дистанционными пучками, получаемыми на ускорителях, а также в виде контактного облучения на шланговых аппаратах с зарядом радиоактивного калифорния 252Cf. Установлено, что клинический результат использования нейтронов в меньшей степени зависят от кислородного эффекта, фазы клеточного цикла, режима фракционирования дозы по сравнению с применением традиционных видов излучения, в связи с чем, их можно использовать для лечения рецидивов радиорезистентных опухолей.

obchon_r9.6.jpg

Дистанционное облучение осуществляется в двух видах — статическом и подвижном. Статическое облучение может быть одно- двух- и многопольным с применением формирующих устройств (защитных сроков, клиновидных фильтров, выравнивающих устройств и др.) с цепью создания наибольшей разницы доз, поглощенных опухолью и окружающими нормальными тканями.

При подвижном облучении источник излучения и облучаемое тело находятся в состоянии относительного движения (движется источник или тело либо оба одновременно). Существуют разновидности подвижного облучения: ротационное, секторное (маятниковое), тангенциальное (касательное).

Контактное облучение (по международной терминологии — брахирадиотерапия) предусматривает расположение источника излучения в непосредственной близости от oпyxoлeвого очага или в самом очаге. При контактных методах лучевой терапии создается оптимальное распределение дозы с максимальным значением вблизи расположения источника и крутым падением по мере удаления от него.

В зависимости от способа использования источников излучения контактное облучение делится на аппликационный (для лечения поверхностно расположенных опухолей кожи, слизистой), внутриполостной и внутритканевой методы и системную (радионуклидную) терапию.

Планирование лечения

Современный врач-онколог знает все о лучевой терапии в онкологии.

В арсенале врача имеется много типов излучения и методов облучения. Поэтому правильно спланированное лечение является залогом выздоровления.

При наружной лучевой терапии, онколог для нахождения области облучения применяет симуляцию. При симуляции пациент располагается на столе, а врач определяет один или несколько портов облучения. В ходе симуляции возможно также выполнение компьютерной томографии или иного метода диагностики, чтобы определиться с направлением излучения.

Зоны облучения помечаются специальными маркерами, указывающими направление излучения.

В соответствии с тем, какой тип лучевой терапии избран, больному предлагаются специальные корсеты, которые помогают зафиксировать различные части тела, устраняя их движение при прохождении процедуры. Иногда применяют особые защитные экраны, помогающие защитить соседние ткани.

В соответствии с результатом симуляции специалисты, занимающиеся лучевой терапией, примут решение о необходимой дозе облучения, способе доставки и количестве сеансов.

Главной задачей лучевой терапии является подведение к опухоли канцерицидной дозы ионизирующего излучения при минимальных повреждениях нормальных тканей в зоне облучения и минимальной ответной реакции наиболее радиочувствительных систем и органов. Эта задача решается планированием лучевой терапии (рис. 9.8).

Рис. 9.8. Этапы проведения лучевой терапии [Киселева Е.С. и соавт., 1996].

Планирование проводят поэтапно. Сначала выбирают способ облучения (дистанционный, контактный, сочетанный), вид излучения (гамма-излучение, тормозное, электроны и т.д.) и метод облучения (статическое, подвижное, однопольное или многопольное).

Затем проводится топометрическая подготовка для последующего решения вопроса об адекватном пространственном распределении дозы излучения в объекте. Временное распределение дозы ионизирующего излучения осуществляется выбором режима ее фракционирования.

Основой лучевого лечения является включение в зону облучения минимально возможного объема тканей, но в то же время достаточного для воздействия на все опухолевые элементы.

Это осуществимо только при максимально точном определении положения и размеров опухоли, ее отношении к соседним анатомическим структурам (топометрия). Топометрия необходима для правильного пространственного распределения дозы ионизирующего излучения.

Под клинической топометрией понимают определение у конкретного больного линейных размеров, площади, объема опухоли, органов и анатомических структур и описание их взаимного расположения (синтопии). Эти сведения получают с помощью различных методы визуализации опухолей (рентгенография, ультразвуковое исследование (УЗИ),компьютерная томография (КТ), магниторезонансная томография (МРТ)).

На основании полученной информации устанавливается макроскопический объем опухоли (gross tumor volume — GTV), в котором сосредоточена основная масса опухолевых клеток.

obchon_t9.1.jpg

Однако в окружающих опухоль нормальных тканях могут быть отдельные опухолевые клетки, которые также должны быть включены в зону лучевого воздействия. Поэтому в предлучевой подготовке выделяют клинический объем облучения (clinical tumor volume — CTV), включающий GTV-объем и ткани, где предполагается микроскопическое распространение опухоли.

Кроме того, выделяют еще планируемый объем облучения (planning tumor volume — PTV), учитывающий смещение пациента и его органов во время конкретного сеанса и в динамике облучения. В результате формируется «объем лечения», который получает дозу, достаточную для радикального или паллиативного лечения с учетом толерантности нормальных тканей.

Наиболее оптимальное распространение дозы излучения достигается при объемном (трехмерном) планировании, которое лежит в основе конформного облучения. Его задачей является «придание объему опухоли высокой дозы, ограничивая при этом до минимума дозу на окружающие здоровые ткани» [G.Kuthcer].

Для повышения точности предлучевой топометрической подготовки созданы специальные рентгеновские аппараты, имитирующие терапевтический пучок излучения — симуляторы. Симулятор представляет собой рентгенодиагностический аппарат, который по геометрическим и кинематическим возможностям повторяет аппараты для дистанционного облучения.

При топометрической подготовке больного укладывают на стол симулятора в положении, в каком он будет находиться во время облучения, и выполняют рентгеноскопию. С помощью дистанционно перемещающихся рентгеноконтрастных нитей определяют центр и границы объема облучения и их проекцию на кожу больного, что позволяет правильно выбрать направление пучка излучения и размеры полей облучения.

Основным документом топометрической подготовки является индивидуальная топометрическая карта — выполненное в масштабе графическое изображение контуров сечения тепа, патологического очага, окружающих его органов и анатомических структур, данные о которых необходимы для расчета программы облучения.

Дозиметрическое планирование облучения конкретного больного заключается в выборе источника излучения, метода и конкретных условий (параметров) облучения. Для определения количества радионуклида и силы воздействия его излучения на опухоль и ткани в лучевой терапии используют следующие основные термины.

Поглощенная доза ионизирующего излучения служит для оценки переданной облучаемому объекту энергии на определенную величину его массы. Единицей поглощенной дозы в Международной системе единиц является 1 грей (1 Гр), когда облучаемому веществу массой 1 кг передается энергия величиной 1 Дж (1 Гр=1 Дж/кг). Активность радионуклида измеряется в беккерелях (Бк): 1 Бк — это активность источника, в котором за 1с происходит 1 акт распада.

При дозиметрическом планировании производят расчет времени облучения, необходимого для получения заданной дозы и ее распределения в плоскости или в отдельных контрольных точках. Главная цель дозиметрического планирования — определить, каким будет пространственное распределение дозы в облучаемом объеме при использовании выбранных параметров облучения.

Для расчета доз обычно используются стандартные дозные распределения, полученные экспериментальным или расчетным путем непосредственно для конкретной радиотерапевтической установки — атласы изодозных карт. Однако без специальной дозиметрической проверки использование атласов может привести к существенным систематическим ошибкам в расчете индивидуальных планов.

Таким образом, базой для дозиметрического планирования служит информация о дозиметрических характеристиках радиационных терапевтических аппаратов и источников излучений, а также топометрические данные о подлежащей облучению области тела.

Распределение дозы ионизирующего излучения во времени. Общеизвестно, что доза излучения, которую удается подвести к опухоли, лимитируется толерантностью нормальных тканей. При дистанционном облучении подведение всей лечебной дозы одномоментно невозможно из-за неизбежного повреждения окружающих здоровых тканей.

Дробление лечебной дозы на фракции направлено на использование небольших различий между опухолевыми и нормальными клетками в реакции на облучение, чем достигается расширение радиотерапевтического интервала. Более того, радиобиологические и клинические исследования указывают на возможность улучшения результатов лучевой терапии за счет использования различных вариантов дозно-временных соотношений.

При проведении лучевой терапии пользуются такими понятиями, как режим фракционирования, ритм облучения, доза облучения. В зависимости от разовой очаговой дозы (РОД) условно выделяют режим обычных (мелких) фракций — РОД составляет 1,8-2,2 Гр, средних — разовых очаговых доз 3-5 Гр и крупных фракций — РОД свыше 6 Гр.

Ритм облучения может быть от одной до пяти фракций в неделю. Биологический эффект лучевой терапии связан с величиной разовой дозы, перерывом между отдельными фракциями, количеством фракций за курс облучения (время облучения в днях).

obchon_r9.7.jpg

Для того чтобы связать все эти параметры, принято целесообразным в качестве эталонного фракционирования принять ежедневное облучение по 2 Гр до 60 Гр за 6 недель; по отношению к пятидневной рабочей неделе при любом случае фракционирования принять суммарную дозу 10 Гр. В зависимости от варианта распределения дозы излучения во времени, различают следующие режимы ее фракционирования.

При дистанционной лучевой терапии традиционным (классическим) и наиболее частым режимом фракционирования является ежедневное облучение РОД 1,8-2,0 Гр 5 дней в неделю в течение нескольких недель до канцерицидной

40-80 Гр.

Гипофракционирование — облучение повышенными разовыми дозами, но малым числом фракций за короткое время (по 5-6 Гр, подводимых ежедневно, в течение 4-5 дней). Было доказано, что укрупнение фракций при сохранении одинаковой недельной дозы ведет к возрастанию эффективности лучевого воздействия.

Облучение в этом режиме ведет к быстрой девитализации опухолевых клеток и остановке роста опухоли, поэтому оно широко применяется с целью абластики для предоперационного облучения опухолей, которые отличаются высокой злокачественностью, а также с целью паллиативного и симптоматического лечения при метастазах в кости. Следует учесть, что укрупнение разовых доз закономерно приводит к снижению толерантности здоровых тканей.

Гиперфракцнонирование (мультифракционирование) — курсы лучевой терапии, предусматривающие дополнительное дробление на две (и более) фракции дневной дозы с интервалами между фракциями от 2 до 6 часов. Обычно используют 2-3 фракции в день по 1-1,5 Гр с интервалом 3-6 ч при общей продолжительности курса, равной при облучении в режиме стандартного фракционирования.

Гиперфракционирование применяется для облучения медленно растущих-опухолей.Одномоментное облучение — сумарная поглащенная доза подводится к опухоли за один сеанс, что используется при интраоперационном облучении

В зависимости от наличия перерывов в облучении различают: непрерывный (сквозной) курс лучевой терапии, при котором заданная поглощенная доза накапливается непрерывно, как это происходит при стандартном облучении: расщепленный курс (сплитчкурс) — запланированная доза реализуется в две-три серии облучений, разделенных интервалами отдыха в 2-3 нед.

Проведение лучевой терапии

Главным направлением лучевой терапии является оказание максимального воздействия на опухолевое образование, минимально воздействуя на другие ткани. Чтобы этого добиться, врачу нужно точно определить, где находится опухолевый процесс, чтобы направление и глубина луча позволили достичь поставленных целей.

Эта область носит название поля облучения. Когда производится дистанционное облучение, на кожу наносится метка, которая обозначает область лучевого воздействия. Все соседние области и прочие части тела защищаются экранами из свинца. Сеанс, во время которого производится облучение, продолжается несколько минут, а число таких сеансов определяется дозой облучения, которая, в свою очередь, зависит от характера опухоли и вида опухолевых клеток.

В соответствии с видом новообразования лучевая терапия либо используется как самостоятельный способ лечения, либо является частью комплексной терапии вместе с хирургическим вмешательством или химиотерапией. Лучевая терапия применяется местно с целью облучения отдельных участков тела. Зачастую она содействует заметному сокращению размеров опухоли или приводит к полному излечению.

Продолжительность

Время, на которое рассчитан курс лучевой терапии, определяется спецификой болезни, дозами и применяемым методом облучения. Гамма-терапия зачастую длится 6-8 недель. За это время больной успевает принять 30—40 процедур. Чаще всего лучевая терапия не требует помещения больного в стационар и хорошо переносится. Некоторые показания требуют проведения лучевой терапии в условиях стационара.

Длительность курса лечения и дозы облучения находятся в прямой зависимости от вида болезни и степени запущенности процесса. Срок лечения при внутриполостном облучении длится значительно меньше. Он может состоять из меньшего количества процедур и редко длится больше четырех дней.

Показания к применению

obchon_r9.8.jpg

Лучевая терапия в онкологии применяется при лечении опухолей любой этиологии.

Среди них:

  • рак мозга;
  • рак груди;
  • рак шейки матки;
  • рак гортани;
  • рак легкого;
  • рак поджелудочной железы;
  • рак простаты;
  • рак позвоночника;
  • рак кожи;
  • саркома мягких тканей;
  • рак желудка.

Облучение используется в лечении лимфомы и лейкемии.

Иногда лучевая терапия может проводиться в профилактических целях без свидетельств наличия рака. Такая процедура служит для того, чтобы предотвратить развитие рака.

Диета

Рекомендации по питанию помогут избежать побочных эффектов от курса лечения или уменьшить их выраженность. Особенно важно это для лучевой терапии в области таза и живота. Лучевая терапия и диета при онкологии обладают рядом особенностей.

Надо пить большое количество жидкости, до 12 стаканов в день. Если в жидкости высокое содержание сахара, ее нужно разбавить водой.

Прием пищи дробный, 5-6 раз в день малыми дозами. Пища должна легко усваиваться: следует исключить пищу, содержащую грубые волокна, лактозу и жиры. Такую диету желательно соблюдать еще 2 недели после проведения терапии. Затем можно постепенно вводить продукты с волокнами: рис, бананы, яблочный сок, пюре.

Реабилитация

Применение лучевой терапии сказывается как на опухолевых, так и на здоровых клетках. Особенно вредна она для клеток, которые быстро делятся (слизистые оболочки, кожа, костный мозг). Облучение порождает в организме свободные радикалы, способные нанести вред организму.

Сейчас ведутся работы, чтобы найти способ сделать лучевую терапию более прицельной, чтобы она действовала лишь на клетки опухоли. Появилась установка гамма-нож, служащая для лечения опухолей шеи и головы. В ней обеспечивается весьма точное воздействие на опухоли малых размеров.

Несмотря на это, почти все, кто получал лучевую терапию, в разной степени страдают лучевой болезнью. Боли, отеки, тошнота, рвота, выпадение волос, анемия — такие симптомы в итоге вызывает лучевая терапия в онкологии. Лечение и реабилитация больных после сеансов облучения являются большой проблемой.

Для реабилитации больному нужен отдых, сон, свежий воздух, полноценное питание, использование стимуляторов иммунной системы, средств детоксикации.

Кроме нарушения здоровья, которое порождено тяжелым недугом и жестким его лечением, пациенты испытывают депрессию. В состав мероприятий по реабилитации часто требуется включать занятия с психологом. Все эти мероприятия помогут преодолеть сложности, которые вызвала лучевая терапия в онкологии. Отзывы больных, прошедших курс процедур, говорят о несомненной пользе методики, несмотря на побочные явления.

Понравилась статья? Поделиться с друзьями:
Все про лучевую терапию
Adblock
detector