Проблемы и перспективы развития лучевой терапии в Российской Федерации
Современная стратегия лучевой терапии в онкологии строится с учетом имеющихся технических достижений, результатов исследований в области онкологии и радиобиологии, накопленного опыта наблюдений за отдаленными эффектами лечения. Основу технических средств, современной лучевой терапии составляют гамма-терапевтические аппараты и линейные ускорители.
Отечественная промышленность в настоящее время производит гамма-терапевтический аппарат Рокус и несколько типов ускорителей. Однако другой крайне необходимой аппаратуры и вспомогательного оборудования (симулятор, терапевтические дозиметры, коллимирующие, фиксирующие устройства и др.) Россия не производит.
В этой связи говорить о гарантии качества лучевого лечения у большинства граждан России, получающих лучевую терапию, не приходится. Продолжает увеличиваться разрыв в качестве лучевой терапии в ведущих спецучреждениях России и большинстве онкологических диспансеров. В России создана довольно мощная служба лучевой терапии.
Имеется 130 специализированных радиотерапевтических отделений, оснащенных 38 ускорителями, 270 дистанционными гамма-терапевтическими установками, 93 аппаратами для контактной фотонной терапии, 140 кабинетами рентгенотерапии. Лишь на этом основании возможно привлечение в лучевую терапию высококвалифицированных кадров.
В России лучевую терапию получают менее 30% онкологических больных, в развитых странах 70%;
Имеется около 130 отделений лучевой терапии, техническое оснащение 90% которых находится на очень низком уровне, отставая от развитых стран на 20—30 лет;
90% дистанционных гамма-терапевтических аппаратов относятся к разработкам 60—70 годов;
70% дистанционных гамма-терапевтических установок выработали 10-летний ресурс;
Более 40% дистанционных гамма-терапевтических аппаратов не позволяют реализовать современные терапевтические технологии;
Ошибка в отпуске дозы на изношенных аппаратах достигает 30%, вместо допустимых 5%;
Около 50% радиологических отделений онкологических диспансеров не оснащены аппаратами для контактной лучевой терапии;
40% аппаратов для контактной лучевой терапии находятся в эксплуатации более 10 лет;
Соотношение кобальтовых установок и медицинских ускорителей 7:1 вместо принятого в развитых странах 1:2;
Онкологические диспансеры практически не оснащены аппаратурой (отвечающей требованиями гарантии качества) для предлучевой топометрической подготовки, дозиметрическим оборудованием, фиксирующими устройствами, компьютеризированными аппаратами для отливки формирующих блоков и т. д.
Из приведенных данных следует основные фонды отечественной лучевой терапии практически полностью состарились, что неизбежно приводит к ухудшению качества лечения и дискредитации метода. Лучевая терапия в России находится на критически низком уровне. Жизненно важной задачей её развития является модернизация радиотерапевтической техники.
Современные технологии в лучевой терапии предъявляют новые требования не только к качеству аппаратуры, но и её количеству. С учетом роста заболеваемости и сложности методик лучевой терапии для обеспечения ее в современных условиях необходимо иметь: 1 аппарат для дистанционной лучевой терапии на 250-300 тыс.
населения, 1 аппарат для контактной лучевой терапии на 1 млн. населения, на 3-4 аппарата дистанционной лучевой терапии по одному КТ и рентгеновскому симулятору, на каждый аппарат для контактной лучевой терапии один аппарат рентгенотелевизионного контроля укладки, на 3-4 аппарата лучевой терапии по одному дозиметрическому комплексу.
Совершенно очевидно, что в соответствии с этими требованиями даже при условии достаточного финансирования потребуется не менее 15 лет на оснащение, строительство новых и модернизацию имеющихся радиологических корпусов. В этой связи на первом этапе развития радиационной онкологии в России представляется целесообразным создание 20-25 межрегиональных специализированных онкологических центров, оснащенных полным набором современной радиотерапевтической техники, позволяющей реализовывать передовые технологии в лучевой терапии.
На сегодняшний день первоочередной задачей также является создание современной отечественной радиотерапевтической техники. Период многолетнего застоя в развитии отечественной радиотерапевтической техники в настоящее время, в основном усилиями Минатома России, начинает преодолеваться. Была разработана научно-техническая программа «СОЗДАНИЕ ТЕХНОЛОГИЙ И АППАРАТУРЫ ДЛЯ ЛУЧЕВОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ» на 2000—2002 гг.
, которая согласована с предприятиями разработчиками, производителями и медицинскими соисполнителями. Программа утверждена Министерствами атомной энергии и здравоохранения. В результате ее реализации создан линейный ускоритель ЛУЭР-20 , освоено производство по лицензии фирмы ФИЛИПС ускорителя SL-75-5.
Данный ускоритель стоимостью около 1,5 млн. долларов поставляется централизовано и комплектуется дорогостоящим дозиметрическим оборудованием и планирующей компьютерной системой, в которых остро нуждаются радиологические отделения. Парадоксально, однако, что при нынешнем дефиците радиотерапевтической аппаратуры и финансов завод изготовитель вынужден сегодня работать на склад.
В НИИФА (г. Санкт-Петербург) разработаны макеты рентгеновского симулятора с томографической приставкой для предлучевой топометрической подготовки, системы дозиметрического компьютерного планирования процедур облучения, универсального клинического дозиметра, анализатора дозного поля, комплекс аппаратуры и методик для обеспечения качества лучевой терапии. Создан и завершаются клинические испытания аппарата для брахитерапии АГАТ-ВТ.
L использование при планировании лучевой терапии самого современного диагностического комплекса — КТ — МРТ — УЗИ ПЭТ;
L широчайшее применение унифицированных и индивидуальных иммобилизационных устройств, а также систем для стереотаксической центрации терапевтических пучков;
L существенное влияние на развитие и совершенствование лучевой терапии может оказать использование пучков тяжелых заряженных частиц (адронов);
L применение высокоэнергетических протонов, учитывая появление ряда опытных образцов компактных и, что очень важно, сравнительно недорогих специализированных медицинских циклотронов-генераторов пучков протонной энергией до 250—300 Мэв;
L по-прежнему, из-за непомерно высокой стоимости туманны перспективы клинического применения пионов и заряженных тяжелых ионов, несмотря на то, что эта терапия характеризуется отличным дозным распределением и высоким значением ЛПЭ, что имеет существенное преимущество перед протонной терапией;
L в последние годы все более жесткую конкуренцию методикам прецизионного дистанционного облучения, в особенности при раке предстательной железы и опухолях мозга составляет стереотаксическая внутритканевая терапия. Тем не менее, несмотря на то, что возможности этого метода далеко не исчерпаны, перспективы неинвазивных способов воздействия выглядят предпочтительнее;
L приблизиться к качеству протонотерапии при использовании традиционных пучков фотонов энергией 15-20 Мэв уже сейчас могут позволить автоматические коллиматоры фигурных полей, модулирующие интенсивность излучения в широком диапазоне;
L решение проблемы верификации программы облучения, несомненно, лежит на пути прямого дозиметрического контроля в режиме реального масштаба времени. В разрабатываемых образцах оборудования используются как TLD, ионизационные камеры, так и люминисцентные экраны. Оптимальной схемы предложить до настоящего времени не удалось, хотя не исключено, что именно комбинация нескольких способов дозиметрии обеспечит искомый результат.
Так или иначе — конечная цель реализации этого направления — создание максимального градиента дозы на границе «опухоль-здоровая ткань», в условиях максимальной же гомогенности дозного поля в зоне опухолевого роста, в то же время, достижение этой цели принципиально возможно и с помощью одного из вариантов «системной» лучевой терапии, предполагающих использование меченых иммунных комплексов (радиоиммунотерапия) или меченых метаболитов.
В последние годы, например, активно разрабатываются принципиально новые многоэтапные схемы радиоиммунотерапии с использованием авидин-биотиновых комплексов. А к числу наиболее перспективных меченых метаболитов относятся, в частности, модифицированные сахара уже нашедшие применение в клинической практике в качестве диагностических препаратов (18F-2D-глюкоза);
L весьма перспективным представляется продолжение исследований по проблемам селективного управления радиочувствительностью тканей с помощью различных радиомодифицирующих агентов: гипер — и гипотермии, электронакцепторных соединений, противоопухолевых лекарственных препаратов, радиопротекторов (кратковременной газовой гипоксии) и др.;
L не менее интересны и важны работы, посвященные поиску прогностических факторов, позволяющих приблизиться к индивидуальному планированию лучевого лечения по разработке новых технологий контактных и интраоперационных методов облучения и по сочетанному использованию ядерных частиц (протонов, нейтронов, нейтрон-захватного облучения);
L важное прикладное значение приобретает целый ряд молекулярно-биологических исследований последнего времени. В первую очередь, это изучение молекулярных основ злокачественности и формирование нового набора прогностических факторов, таких как: нарушение экспрессии ряда антионкогенов (р53, bcl-2), факторов роста или их рецепторов (erbB-2, TGFP, EGF, EGFR), изменение активности сериновых металлопротеаз или титра антител к веществам, связанным непосредственно с сосудистой инвазией (к VIII фактору свертываемости, D-31), позволяющих, в перспективе, с максимальной точностью определять показания к адъювантной терапии;
L в условиях повсеместного использования многокомпонентных программ комплексного лечения при большинстве форм злокачественных новообразований, первостепенное значение приобретают клинико-радиобиологические исследования;
МЕТОДЫ ЛУЧЕВОЙ ТЕРАПИИ
Методы лучевой терапии делятся на наружные и внутренние в зависимости от способа подведения ионизирующего излучения к облучаемому очагу. Сочетание методов называют сочетанной лучевой терапией.
Наружные методы облучения — методы, при которых источник излучения находится вне организма. К наружным методам относятся методы дистанционного облучения на различных установках с использованием разного расстояния от источника излучения до облучаемого очага.
— дистанционная, или глубокая, рентгенотерапия;
— терапия тормозным излучением высокой энергии;
— терапия быстрыми электронами;
— протонная терапия, нейтронная и терапия другими ускоренными частицами;
— аппликационный метод облучения;
— близкофокусная рентгенотерапия (при лечении злокачественных опухолей кожи).
Дистанционная лучевая терапия может проводиться в статическом и подвижном режимах. При статическом облучении источник излучения неподвижен по отношению к больному. К подвижным методам облучения относятся ротационно-маятниковое или секторное тангенциальное, рота-ционно-конвергентное и ротационное облучение с управляемой скоростью.
Облучение может осуществляться через одно поле или быть многопольным — через два, три и более полей. При этом возможны варианты встречных или перекрестных полей и др. Облучение может проводиться открытым пучком или с использованием различных формирующих устройств — защитных блоков, клиновидных и выравнивающих фильтров, решетчатой диафрагмы.
При аппликационном методе облучения, например в офтальмологической практике, аппликаторы, содержащие радионуклиды, прикладывают к патологическому очагу.
Близкофокусную рентгенотерапию применяют для лечения злокачественных опухолей кожи, при этом расстояние от выносного анода до опухоли составляет несколько сантиметров.
Внутренние методы облучения — методы, при которых источники излучения вводят в ткани или в полости организма, а также применяют в виде радиофармацевтического препарата, введенного внутрь пациента.
— системная радионуклидная терапия.
При радиохирургическом лечении установками гамма-нож, кибер-нож осуществляют прицельное облучение малых мишеней с помощью специальных стереотаксических устройств с использованием точных оптических направляющих систем для трехмерной (three-dimensional — 3D) радиотерапии множественными источниками.
При системной радионуклидной терапии используют радиофармацевтические препараты (РФП), вводимые пациенту внутрь, соединения, тропные к определенной ткани. Например, путем введения радионуклида йода проводят лечение злокачественных опухолей щитовидной железы и метастазов, при введении остеотропных препаратов — лечение метастазов в кости.
Виды лучевого лечения. Различают радикальную, паллиативную и симптоматическую цели лучевой терапии. Радикальную лучевую терапию проводят с целью излечения больного с применением радикальных доз и объемов облучения первичной опухоли и зон лимфогенного метастазирования.
Паллиативное лечение, направленное на продление жизни больного путем уменьшения размеров опухоли и метастазов, выполняют меньшими, чем при радикальной лучевой терапии, дозами и объемами облучения. В процессе проведения паллиативной лучевой терапии у части больных при выраженном положительном эффекте возможно изменение цели с увеличением суммарных доз и объемов облучения до радикальных.
Симптоматическую лучевую терапию проводят с целью снятия каких-либо тягостных симптомов, связанных с развитием опухоли (болевой синдром, признаки сдавления сосудов или органов и др.), для улучшения качества жизни. Объемы облучения и суммарные дозы зависят от эффекта лечения.
— фракционированное, или дробное, облучение;
Примером однократного облучения служит протонная гипофизэктомия, когда лучевую терапию выполняют за один сеанс. Непрерывное облучение происходит при внутритканевом, внутри полостном и аппликационном методах терапии.
— обычное (классическое) мелкое фракционирование — 1,8—2,0 Гр в день 5 раз в неделю; СОД (суммарная очаговая доза) — 45—60 Гр в зависимости от гистологического вида опухоли и других факторов;
— среднее фракционирование — 4,0—5,0 Гр в день 3 раза в неделю;
— крупное фракционирование — 8,0—12,0 Гр в день 1—2 раза в неделю;
— интенсивно-концентрированное облучение — 4,0—5,0 Гр ежедневно в течение 5 дней, например в качестве предоперационного облучения;
— ускоренное фракционирование — облучение 2—3 раза в сутки обычными фракциями с уменьшением суммарной дозы за весь курс лечения;
— гиперфракционирование, или мультифракционирование — дробление суточной дозы на 2—3 фракции с уменьшением дозы за фракцию до 1,0—1,5 Гр с интервалом 4—6 ч, при этом продолжительность курса может не измениться, но суммарная доза, как правило, повышается;
— динамическое фракционирование — облучение с различными схемами фракционирования на отдельных этапах лечения;
— сплит-курсы — режим облучения с длительным перерывом на 2—4 нед в середине курса или после достижения определенной дозы;
— низкодозный вариант фотонного тотального облучения тела — от 0,1— 0,2 Гр до 1—2 Гр суммарно;
— высокодозный вариант фотонного тотального облучения тела от 1—2 Гр до 7—8 Гр суммарно;
— низкодозный вариант фотонного субтотального облучения тела от 1—1,5 Гр до 5—6 Гр суммарно;
— высокодозный вариант фотонного субтотального облучения тела от 1—3 Гр до 18—20 Гр суммарно;
— электронное тотальное или субтотальное облучение кожи в различных режимах при ее опухолевом поражении.
Величина дозы за фракцию имеет большее значение, чем общее время курса лечения. Крупные фракции более эффективны, чем мелкие. Укрупнение фракций при уменьшении их числа требует уменьшения суммарной дозы, если не изменяется общее время курса.
Различные варианты динамического фракционирования дозы хорошо разработаны в МНИОИ имени П. А. Герцена. Предложенные варианты оказались гораздо эффективнее, чем классическое фракционирование или подведение равных укрупненных фракций. При проведении самостоятельной лучевой терапии или в плане комбинированного лечения используют изо-эффективные дозы при плоско клеточном и аденогенном раке легкого, пищевода, прямой кишки, желудка, гинекологических опухолях, саркомах мягких тканей. Динамическое фракционирование существенно повысило эффективность облучения за счет увеличения СОД без усиления лучевых реакций нормальных тканей.
Величину интервала при сплит-курсе рекомендуется сокращать и до 10— 14 дней, так как репопуляция выживших клоновых клеток появляется в начале 3-й недели. Тем не менее при расщепленном курсе улучшается переносимость лечения, особенно в случаях, когда острые лучевые реакции препятствуют проведению непрерывного курса.
При проведении лучевой терапии используют методы модификации радиочувствительности злокачественных опухолей. Радиосенсибилизация лучевого воздействия — процесс, при котором различные способы приводят к увеличению поражения тканей под влиянием облучения. Радиопротекция — действия, направленные на снижение поражающего эффекта ионизирующего излучения.
Оксигенотерапия — метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода при обычном давлении.
Оксигенобаротерапия — метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода в специальных барокамерах под давлением до 3—4 атм.
Использование кислородного эффекта при оксигенобаротерапии, по данным СЛ. Дарьяловой, было особенно эффективно при лучевой терапии недифференцированных опухолей головы и шеи.
Регионарная турникетная гипоксия — метод облучения больных со злокачественными опухолями конечностей в условиях наложения на них пневматического жгута. Метод основан на том, что при наложении жгута р02 в нормальных тканях в первые минуты падает почти до нуля, а в опухоли напряжение кислорода еще некоторое время остается значительным. Это дает возможность увеличить разовую и суммарную дозы облучения без повышения частоты лучевых повреждений нормальных тканей.
Гипоксическая гипоксия — метод, при котором до и во время сеанса облучения пациент дышит газовой гипоксической смесью (ГГС), содержащей 10 % кислорода и 90 % азота (ГГС-10) или при уменьшении содержания кислорода до 8 % (ГГС-8). Считается, что в опухоли имеются так называемые ос-трогипоксические клетки.
К механизму возникновения таких клеток относят периодическое, длящееся десятки минут резкое уменьшение — вплоть до прекращения — кровотока в части капилляров, которое обусловлено в числе других факторов повышенным давлением быстрорастущей опухоли. Такие острогипоксические клетки радиорезистентны, в случае наличия их в момент сеанса облучения они «ускользают» от лучевого воздействия.
В РОНЦ РАМН этот метод применяют с обоснованием, что искусственная гипоксия снижает величину предсуществующего «отрицательного» терапевтического интервала, который определяется наличием гипоксических радиорезистентных клеток в опухоли при их практически полном отсутствии в нормальных тканях. Метод необходим для защиты высокочувствительных к лучевой терапии нормальных тканей, расположенных вблизи облучаемой опухоли.